47 research outputs found

    Impact of an International Nosocomial Infection Control Consortium multidimensional approach on central line-associated bloodstream infection rates in adult intensive care units in eight cities in India

    Get PDF
    SummaryObjectiveTo evaluate the impact of the International Nosocomial Infection Control Consortium (INICC) multidimensional infection control approach on central line-associated bloodstream infection (CLABSI) rates in eight cities of India.MethodsThis was a prospective, before-and-after cohort study of 35650 patients hospitalized in 16 adult intensive care units of 11 hospitals. During the baseline period, outcome surveillance of CLABSI was performed, applying the definitions of the CDC/NHSN (US Centers for Disease Control and Prevention/National Healthcare Safety Network). During the intervention, the INICC approach was implemented, which included a bundle of interventions, education, outcome surveillance, process surveillance, feedback on CLABSI rates and consequences, and performance feedback. Random effects Poisson regression was used for clustering of CLABSI rates across time periods.ResultsDuring the baseline period, 9472 central line (CL)-days and 61 CLABSIs were recorded; during the intervention period, 80898 CL-days and 404 CLABSIs were recorded. The baseline rate was 6.4 CLABSIs per 1000 CL-days, which was reduced to 3.9 CLABSIs per 1000 CL-days in the second year and maintained for 36 months of follow-up, accounting for a 53% CLABSI rate reduction (incidence rate ratio 0.47, 95% confidence interval 0.31–0.70; p=0.0001).ConclusionsImplementing the six components of the INICC approach simultaneously was associated with a significant reduction in the CLABSI rate in India, which remained stable during 36 months of follow-up

    On the constraints violation in forward dynamics of multibody systems

    Get PDF
    It is known that the dynamic equations of motion for constrained mechanical multibody systems are frequently formulated using the Newton-Euler’s approach, which is augmented with the acceleration constraint equations. This formulation results in the establishment of a mixed set of partial differential and algebraic equations, which are solved in order to predict the dynamic behavior of general multibody systems. The classical resolution of the equations of motion is highly prone to constraints violation because the position and velocity constraint equations are not fulfilled. In this work, a general and comprehensive methodology to eliminate the constraints violation at the position and velocity levels is offered. The basic idea of the described approach is to add corrective terms to the position and velocity vectors with the intent to satisfy the corresponding kinematic constraint equations. These corrective terms are evaluated as function of the Moore-Penrose generalized inverse of the Jacobian matrix and of the kinematic constraint equations. The described methodology is embedded in the standard method to solve the equations of motion based on the technique of Lagrange multipliers. Finally, the effectiveness of the described methodology is demonstrated through the dynamic modeling and simulation of different planar and spatial multibody systems. The outcomes in terms of constraints violation at the position and velocity levels, conservation of the total energy and computational efficiency are analyzed and compared with those obtained with the standard Lagrange multipliers method, the Baumgarte stabilization method, the augmented Lagrangian formulation, the index-1 augmented Lagrangian and the coordinate partitioning method.The first author expresses his gratitude to the Portuguese Foundation for Science and Technology through the PhD grant (PD/BD/114154/2016). This work has been supported by the Portuguese Foundation for Science and Technology with the reference project UID/EEA/04436/2013, by FEDER funds through the COMPETE 2020 – Programa Operacional Competitividade e Internacionalização (POCI) with the reference project POCI-01-0145-FEDER-006941.info:eu-repo/semantics/publishedVersio

    International nosocomial infection control consortium (INICC) report, data summary of 36 countries, for 2004-2009

    Get PDF
    The results of a surveillance study conducted by the International Nosocomial Infection Control Consortium (INICC) from January 2004 through December 2009 in 422 intensive care units (ICUs) of 36 countries in Latin America, Asia, Africa, and Europe are reported. During the 6-year study period, using Centers for Disease Control and Prevention (CDC) National Healthcare Safety Network (NHSN; formerly the National Nosocomial Infection Surveillance system [NNIS]) definitions for device-associated health care-associated infections, we gathered prospective data from 313,008 patients hospitalized in the consortium's ICUs for an aggregate of 2,194,897 ICU bed-days. Despite the fact that the use of devices in the developing countries' ICUs was remarkably similar to that reported in US ICUs in the CDC's NHSN, rates of device-associated nosocomial infection were significantly higher in the ICUs of the INICC hospitals; the pooled rate of central line-associated bloodstream infection in the INICC ICUs of 6.8 per 1,000 central line-days was more than 3-fold higher than the 2.0 per 1,000 central line-days reported in comparable US ICUs. The overall rate of ventilator-associated pneumonia also was far higher (15.8 vs 3.3 per 1,000 ventilator-days), as was the rate of catheter-associated urinary tract infection (6.3 vs. 3.3 per 1,000 catheter-days). Notably, the frequencies of resistance of Pseudomonas aeruginosa isolates to imipenem (47.2% vs 23.0%), Klebsiella pneumoniae isolates to ceftazidime (76.3% vs 27.1%), Escherichia coli isolates to ceftazidime (66.7% vs 8.1%), Staphylococcus aureus isolates to methicillin (84.4% vs 56.8%), were also higher in the consortium's ICUs, and the crude unadjusted excess mortalities of device-related infections ranged from 7.3% (for catheter-associated urinary tract infection) to 15.2% (for ventilator-associated pneumonia). Copyright © 2012 by the Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved

    Muhammad Sang Pembebas

    No full text

    General and Explicit Equations of Motion for Constrained Mechanical Systems

    No full text
    corecore